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Some results from the enumeration of Kekuld structures are reviewed; they 
pertain to parallelogram-shaped, bent strips, chevrons and symmetrical hexagon- 
shaped benzenoids. The existing formulas are extended to the class of asym- 
metrical hexagons. Applications of the new formula reproduces a number of 
known results for three-tier and four-tier strips. In the latter case also some new 
formulas are achieved. 

( Keywords." Kekul~ structures," Benzenoids) 

Die Anzahl der KekulO-Strukturen yon Benzenoiden mit sechseckigem UmriJ3 und 
Mitgliedern anderer verwandter Klassen 

Es wird ein Uberblick fiber die Berechnung der Anzahl m6glicher Kekul~- 
Strukturen von benzenoiden Verbindungen unterschiedlicher Formenklassen 
gegeben. Dabei werden die existierenden Formeln fiir die Klasse asymmetrischer 
Sechseckformen ausgeweitet und die neue Formel auch an bekannten Ergebnissen 
erprobt. 

Introduction 

The enumeration of Kekuld structures 1,2 in conjugated hydrocarbons 
has attained an increasing interest in modern times 3-6. The present work 
deals with pert-condensed benzenoid systems only; they are represented 
by reticles of  regular hexagons. The emphasis is laid on combinatorial  
formulas in closed form. The number of  Kekuld structures of  a benzenoid 
B is designated K{B}. 

The main subject of  this paper  is a study of a class of  benzenoids 
referred to as hexagonal. We prefer this designation 7 rather than the 
alternative 8 "circular", especially because we now are going to renounce 
much of  the symmetry in these systems. 
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Results and Discussion 

Previous Results 

The combinatorial formula of K for the m × n parallelogram-shaped 
benzenoids, say L(m, n) = L(n, m), is a classical result 7, which has been 
quoted frequently 4-6' s: 

This class of benzenoids contains two parameters (m, n), which are the 
numbers of hexagons in a row or column. In general the parameters are 

V(k, m, n) 

k h = 24 

= 381 

J 

Fig. 1. The benzenoid V(k, m, n) with k = 3, m = 5, n = 6: V(3, 5, 6); the number 
of rings (h) and Kekul¢ structures (K) are indicated 

positive integers, which however, usually may degenerate to zero. Classes 
of three-parameter benzenoids have also been studied: 

1. Bent strip. This (V-shaped) benzenoid may be interpreted as a sub- 
benzenoid of the m x n parallelogram; cf. Fig. 1. It is determined by three 
parameters (k, m, n). A general formula for the number of Kekuld 
structures has recently been derived by Cyvin and Gutman9; 

K{V(k, m, n)} = 2 (2) 
i = 0  

These authors 9 have also solved the problem for the bent strip of unequal 
thickness of the two branches, a four-parameter problem. 

2. Chevron-shaped benzenoids. The classical paper of Gordon and 
Davison 7 contains a general formula for the K number of a three- 
parameter chevron-shaped benzenoid; cf. Fig. 2. The formula has since 
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Ch(k, m, n) 

N 
J 

k 

= 24 

798 

• J 

Fig. 2. The benzenoid Ch(4, 3, 4); the numbers ofh and Kate given (notice that h is 
the same as in Fig. 1) 

0(2, 2, 2) 0(2, 2, 3) 

n 

h = 7 ,  K = 2 0  h = 1 0 ,  K = 5 0  

0(3, 3, 2) 

h = 14, K = 175 

0(3, 3, 3) 

n 

h = 1 9 ,  K = 9 8 0  

Fig. 3. Two regular, O(n, n,n), and two dihedral, O(m,m, n), hexagon-shaped 
benzenoids; values of m, n, h and K are given 
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passed unnoticed and seems therefore to be worth citing here. It reads (in a 
slightly modified form): 

K { C h ( k ' m ' n ) } = ~ ( k + i - - 1 ) ( m + J  ~" . (3) 

3. Hexagon-shaped benzenoids. The chevron is a sub-benzenoid in 
O(k, m, n), presently referred to as the hexagon-shaped (or hexagonal) 
benzenoid. Gordon and Davison 7 have credited R. M. Everett for the 
equation o f K f o r  O(n, n, n), the regular hexagon (a), and M. Woodger for 
the more general case O (m, m, n), the dihedral hexagon (b). Fig. 3 shows 
some examples. The formulas 7'8 are given below in a slightly modified 
form. 

a) The regular hexagon-shaped benzenoid (symmetry D6h ) has 2n--1 
rows (tier chains), and the number of rings is h = 3n(n--1)  + 1. The 
number of Kekulk structures is 

i ) 
K{O(n, n, n)} = I-[ (4) 

b) The dihedral hexagon (symmetry D2h ) has 2m- -1  rows, h = 
m(m + 2n) - -2m--n  + 1, and +,) 

K{O(m, m, n)} = lq (5) 
i=o (n+i)n 

Notice that m and n are not interchangeable; Fig. 3 includes O (2, 2, 3) and 
0(3, 3, 2), which are not identical. 

In the form eqns. (4) and (5) are written it is easy to put down the result: 
Start with n as the upper figure in the first binomial coefficient of the 
denominator; notice that these figures follow consecutively, and each 
product has the same number of factors, viz. m. Thus, for instance, 

(52) (62) ( : )  

The asymmetrical hexagon-shaped benzenoids, O(k,m,n), are the 
main subject of the present work. A simple (but not trivial) extension of 
eqn. (5) was achieved to make it applicable to this three-parameter case. 
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Asymmetrical Hexagon-Shaped Benzenoids 

The asymmetrical hexagon with all parameters (k, m, n) different (cf. 
Fig. 4) belongs to the symmetry C2h- The parameters are permutable; 
O(k,m,n), O(k,n,m), O(m,n,k),  etc., are all identical. If  one of  the 

o ( k ,  m, n) 

h = 18 

K= 490 

0 (1 ,  m, n) = L(m, n) h = 18 

Fig. 4. The asymmetrical hexagon-shaped benzenoid with parameters 2, 3 and 4 
(top part). The bottom part shows how the hexagon degenerates into a 
parallelogram when one of the parameters is unity. Corners are marked with dots 

parameters is 1, the hexagon degenerales into a parallelogram. The 
number of rings is 

h = ( k + m ) ( n - - 1 )  + k m - - n +  1 (7) 

K =  IF] (8) 

Recurrence Relations 

From eqn. (8) we obtain a recurrence relation when one of the 
parameters is increased by unity. Because of the permutation properties all 

Number of Kekuld structures: 
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cases are covered if only one of the parameters, say k, is chosen to undergo 
this change. The relation reads 

(k+m+n)n 
K{O(k + l,m,n)} & k+m+i  

= 11  - ( 9 )  K{O(k,m,n)} i=, k+i (k+n 1 
k , ~  / 

We also give a recurrence relation pertaining to the dihedral hexagon- 
shaped benzenoids: 

K{O(m + 1 ,m+ 1,n)} (2m +n  + 1) (2mn+ n) 2 
= (10) 

K{O(m,m,n)} (2m+ 1) (rn + n) 2 n  

Finally we give the corresponding formula for regular hexagons: 

K{O(n + 1,n+ 1,n+ 1)} (3n+ 1)2(3n + 2) ( 3 : )  3 

in) 

Corners of a Hexagon~Shaped Benzenoid 
A hexagon-shaped benzenoid has six special positions at the corners; 

cf. Fig. 4. The number degenerates to four for the parallelograms. In this 
case two corners have collapsed together at the two acute-angle positions. 

If we remove one hexagon from the boarder of O(k, m, n) we run into a 
non-Kekuldan structure in most cases; a Kekuldan structure is achieved 
only if we remove a corner. Let Oa(k, m, n) designate the structure where a 
corner is removed from O(k,m,n) and conventionally chosen at the 
meeting point of the k and m chains; cf. Fig. 5. (Notice that according to 
this convention the rows belonging to the last parameter, n, remain 
undisturbed.) For the K value it is easily found by familiar methods in 
enumeration of Kekul~ structures 10 

K{Oa(k, m, n)} = K{O(k, m, n)}--K{O(k, m, n-- l )}  (12) 

Notice that the removal of two corners in contact with each other again 
leads to a non-Kekuldan structure. Fig. 4 contains examples of this 
situation. The effect of removing one degenerate (acute-angle) double- 
corner from a parallelogram is the same. The removing of two diagonal 
corners may be treated in general terms. We define the benzenoid 



O a ( k ,  m ,  n )  O b ( k ,  m ,  n )  

n n 

n ~ 

h - 16, K{Ob(3 ,2 ,4 )}  

h = 17, K{0a(3,2,4)] = K { 0 ( 3 , 2 , 4 ) }  

= K { (3 ,2 ,4 ) }  - K { 0 ( 3 , 2 , 3 ) }  - ~ { 0 ( 3 , 2 , 3 ) }  

= 490 - 175 = 315 + K{0(3,2,2)} 

= 490 - 350 + 50 = 190 

Fig. 5. The hexagon-shaped benzenoid O(3,2,4) of Fig. 4 with some corners 
removed; the right-hand side benzenoid, Ob(3,2,4), is a zig-zag strip, also 

designated Z(4, 4) 

O a ( k ,  m, n )  0 b (  k ,  m, n )  

m 

~ J 

m h = 16, K{Ob(2,4,3)} 

h = 17, K{Oa(2,4,3)} = K{0(2,4,3)} 

= K { 0 ( 2 , 4 , 3 ) }  - K ' [0 (2 ,4 ,2 ) }  - 2K{0(2 ,4 ,2 ) }  

+ K{O(2,4,1)  } 
= 490 - 105 = 385 

= 490 - 210 + 15 = 295 

k 

h = 17, K[Oa(4,3,2)} 

= K{0(4,3,2)} - K{0(4,3,1)} 

= 490 - 35 = 455 

h = 16, K{Ob(4,3,2)} 

= K{O(4,3,2)} 

- 2~{0(4,3,t)} 

+ K{0(4 ,3 ,O) }  

- 490 - 70 + I - 42] 

Fig. 6. The additional possibilities of removing one or two (diagonal) corners from 
0(3,  2, 4), which is identical with 0(2,  4, 3) and 0(4,  3, 2) 
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0 ( 2 ,  2 ,  n )  0 a ( 2 ,  2 ,  n )  = C h ( 2 ,  2 ,  n )  

= z(3, n) 
" t f • • 

n = 5, h = I6,  K = 196 n = 5, k = 15, K = 92 

0 b ( 2 ,  2 ,  n )  = R ( 2 ,  n )  0 ( 1 ,  3 ,  n )  = L ( 3 ,  n )  

N Irl 

n = 5, h = 14, K = 36 n = 5, h = 15, K = 56 

K{O(2, 2, n)} = ~2(n+l)  (n+2)2(n+3) 

K{Z(3, n) } = l ( n + l )  (n+2) (2n+3) 

K{R(2, n)} = (n+l) 2 

K{L(3, n)} = ~(n+l)  (n+2) (n+3) 

Fig. 7. Different types of regular benzenoids with three tier chains and algebraic 
formulas for the number of Kekuld structures; the dotted edges in R (2, n) represent 

essentially single bonds 

Ob(k, m, n) with one more (diagonal) corner removed from Oa(k,  m, n) as 
shown in Fig. 5. Then we have 

K{Ob(k,  m, n)} = K{O(k, m, n)} 

- -  2 K{O (k, m, n - -  1)} + g { o  (k, m, n- -2 )}  (13) 

Fig. 6 shows (in addition to Fig. 5) the result of removing one or two 
(diagonal) corners from 0(3,  2, 4). Observe the conventions of notation. 

Classes of Three-Tier Strip Benzenoids 

Consider the removal of a corner from 0(2,  2, n) as shown in Fig. 7. 
Equation (12) gives 

K{Oa(2,2,n)} = K{O(2,2, n)}--K{O(2,2, n--1)} (14) 
= K{O(2, n, 2 )}- -K{O(2,  n - - t ,  2)} 



The Number of Kekul~ Structures 41 

On application of eqn. (8) one obtains 

2 E( 2- 21)1: 
1 

-- ~ (n + 1) (n + 2) (2 n + 3) (15) 

By means of eqn. (3) for the chevron one obtains 

K{Ch(2, 2, n)} ~ ( i +  1) 2 n 1 = = ~ ( i + l )  2 = ~ ( n + l l ( n + 2 ) ( 2 n + 3 )  
i = 0  i i = 0  

(16) 

The identity of the results ofeqns. (15) and (16) is not surprising inasmuch 
as the two benzenoids are identical; cf. Fig. 7. The result of these equations 
has been obtained several times by different methods 7's'11'12. 

Assume two diagonal corners to be removed from 0(2, 2, n) as shown 
in Fig. 7. Equation (13) gives 

K{O b(2, 2, n)} = K{O (2, 2, n)} - - 2  K {O(2, 2, n - - l )}  + K{O (2, 2, n--2)} 

= K{O(2, n, 2)}--2K{O(2, n--l,2)} + K{O(2, n--2 ,  2)} (17) 

and on inserting from eqn. (8): 

K{Ob(e'2'n)}=~I(n2 2 3 ) - - 2 ( n  2 2 

+ 2 

This result can be obtained much easier; the benzenoid is in fact a special 
case of a well known class of rectangular-shaped benzenoids 7' s 

For the sake of completeness also the hexagon- and parallelogram- 

O a ( 2 ,  n ,  2)  

n 

n =5 
k = 15 
K = 175  

K{0a(2, n, 2)} =~2(n+l)(n+2)(n+5); n Z 1 

Fig. 8. One corner removed from 0(2, 2, n) or 0(2, n, 2) 
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shaped benzenoids of three-tier strips are included in Fig. 7. The list of K- 
value formulas of Fig. 7 may be supplemented by another class of three- 
tier strips, where a corner has been removed from O (2, 2, n) or O (2, n, 2); 
cf. Fig. 8. The formula therein is new, but supposed to be too special to be 
really important. 

All the other formulas (given in Fig. 7) for three-tier strips are already 
well known. Also different classes of five-tier strips have been 
studied 7, 8,12, taking advantage of the O (3, 3, n) benzenoids, for which eqn. 
(5) is relevant. These benzenoids, viz. 0(3,  3, n), are here referred to as 
dihedral-hexagonal. The four-tier strips represent a gap in these in- 
vestigations. With the knowledge of eqn. (8) for the asymmetrical- 
hexagonal benzenoids also these classes may be studied by the same 
methods. 

Classes ofF our-Tier Strip Benzenoids 
Here the four-tier strips are treated systematically. Only the regular 

classes are considered in the sense that the bot tom and top rows should 
have the same length of n hexagons. Consequently the example of Fig. 8 
falls outside the system. 

1. Hexagons 
The only possibility for a non-degenerate hexagonal benzenoid with 

four tier chains is 0(3,  2, n), which also may be written 0(2,  3, n), and 
belongs to the asymmetrical type (unless n = 2 or 3); Fig. 4 depicts the 
example wi thn  = 4. In this case one has according to eqn. (8): 

l ( n 3 3 ) ( n 3 4 )  K{O(3, 2, n)} = K{O(2, n, 3)} = 

1 (19) 
- 144(n + 1)(n + 2)2(n + 3)2(n + 4) 

2. Pentagons 
A sub-benzenoid of O (3, 2, n) is obtained on removing one corner as 

depicted in Fig. 9. It has a pentagonal shape with one of the sides indented. 
The chevron Ch(3, 2, n) is a sub-benzenoid of  this pentagon. Equations 
(12) and (8) lead to 

K{Oa(3, 2, n)} = K{O(2, n, 3)}- -K{O(2,  n - - l ,  3)} 

= l ( n 3 3 ) I ( n + 4 ) _ _ ( n + 2 ) ]  ~1 (20) 
4 3 3 =~-~ (n+l)(n+2)3(n+3) 
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3. Zig-zag strip 
On removing two (diagonal) corners from O (3, 2, n) as shown in Fig. 5 

we attain at the Z(4, n) zig-zag strip or multiple zig-zag chain. Equations 
(13) and (8) give 

K {Z (4, n)} = K{O b (3, 2, n)} = K{O (2, n, 3)} - -  2 K{O (2, n - -  1, 3)} + 

+K{O(2'n--2'3)}=~[(n+3)(n+4) 3 

+ 3)(n+ 2) + (n+ 2)(n+ 

1 
= 2 ~ ( n +  1)(n + 2)(5n 2 + 15n + 12) 

This result was derived in an other way by Gutman and Cyvin I1. 

4. Parallelograms 
Equation (1) gives 

1 
K{L(4, n)} = ~ ( n  + 1) (n + 2) (n + 3) (n + 4) 

For n = 4 as an example, h = 16 and K = 70. 

(22) 

5. Chevrons 
For the Ch(3, 2, n) benzenoid, which has four tier chains, one obtains 

from eqn. (3) 

K{Ch(3 ,2 ,n )}=  ~ ( i + 2 ) ( i ~ 1 )  1 ~ 
i=0 " = 2  i=o ( i +  1)2( i+  2) 

1 (23) 
= 24 (n + 1) (n + 2) (3 n 2 + 13 n + 12) 

For Ch(3,2,4) as an example, one has h = 16 and K =  140. 

6. Chevrons without apex 
Let the corner where the k and m rows of a chevron meet be defined as 

the apex. Then consider the sub-benzenoid Ch(3, 2, n) where the apex is 
10 removed, say Ca(3, 2, n); cf. Fig. 9. The familiar methods combined with 
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eqn. (3) give 

K{Ca(3, 2, n)} = K{Ch(3, 2, n)}--X{Ch(3, 2, n--~)} 
1 (24) 

= 2 1 = ~ (n + 1) 2 (n + 2) 

The result is easily understood by observing the essentially single bonds; 
cf. Fig. 9. It is equivalent with 

K{Ca(3, 2, n)} = K{I42, n)}. Jv{I41, n)} (25) 

Ca(3, 2, n) X(3, 2, n) 

• . . _.-..._..._ 

- i \ j 

n = 4, h = 15, K = 75 n ~ 4, h = 14, K = 25 

Fig. 9. The chevron Ch(3, 2, n) without apex (left), and a goblet (right); essentially 
single bonds are dotted, double bonds heavy 

7. Goblets 
Fig. 9 shows how we arrive at a (skew) goblet-shaped benzenoid on 

removing one hexagon from Ca(3,2,n). The effect on the number of 
Kekulb structures is reflected by the following equations. 

K{X(3, 2, n)} = K{Ca(3, 2, n)} - -K{B}  (26) 

where 

K{B} = K{Ca(3, 2, n - - l )}  + K{L(2, n - - l ) }  (27) 

Consequently 

K{X(3'2'n)}=(n+2)( 1 __(n+l'](n~2 ]\l]--\(n+l) 
(28) 

The result could be reached easier, inasmuch as this special type of goblets 
are zethrene-type benzenoids with a number of essentially single bonds; cf. 
Fig. 9. 
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